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ABSTRACT | This paper proposes a methodology for the identification of governing 

differential equations based on empirical data. This method does not require any a priori 

specification of the equation's constituent pieces to be carried out in order to be successful. 

Because of this, there is no requirement for a pre-determined specification of the components 

that are to be included. The strategy that has been suggested has as its primary objective the 

simplification of the incorporation of a dataset or a set of datasets that are relevant to a 

particular solution or a group of particular solutions of a differential equation. The problem-

solving approach that has been suggested is developed with the purpose of being flexible 

enough to adapt to either scenario. The end result is a differential equation that has been 

written down in a way that is simple enough for folks to comprehend. The equation has been 

changed and tweaked in order to provide a more accurate representation of the particular 

solutions that have been presented. Improving one's understanding of differentiable data models 

is the primary objective of this research project. In the following step, the outputs that are 

produced by these models are then utilized as inputs inside the framework of genetic 

programming. This approach makes use of graphical representations to explain calculations by 

employing a wide variety of functions, parameters, and sometimes differential operators that 

are applied to functions. Our method, which makes use of recursive applications of automatic 

differentiation, has the capacity to investigate any arbitrary combination of operators without 

needing any input from the user. This is made possible by the fact that it employs automatic 

differentiation. This method makes it easier to simplify the design and evaluation of differential 

operators. It also makes the process more efficient. In addition, we describe a methodology for 

participating in active learning with the purpose of identifying and addressing flaws within the 

suggested governing equations. Our ultimate goal is to improve the system. The implementation 

of this measure was done so in order to improve the accuracy of the results.    

KEYWORDS | governing differential equations, free form, data analysis, mathematical 

modeling, parameter estimation, system identification 
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INTRODUCTION 

 
Scientists in the modern day have access to a 

growing bank of laboratory data, which makes the 

investigation of new topics and the acquisition of 

new information much easier. However, when 

attempting to apply standard deductive 

approaches, which are normally the basis for 

constructing guiding principles, the enormous 

volume of data may present challenges. We 

provide a method for automating the study and 

manipulation of data in order to generate 

hypotheses, evaluate the validity of those 

hypotheses, and ultimately find new fundamental 

principles that control the natural world. This work 

was motivated by the idea of machine learning as a 

collaborator in scientific activities. Our approach 

is analogous to the growing corpus of published 

research on the application of differential 

programming and machine learning to the problem 

of solving differential equations (1, 2, 3, 4, 5) and 

to the task of determining the accuracy of 

previously established physical laws. 

Our approach to finding free-form equations is 

differentiated from that of earlier research in that 

we take functions as input and apply a number of 

fundamental (algebraic and differential) operators 

on those functions. The expressions used to 

generate, edit, and evaluate real-time data are built 

with the help of these operators. Because of this, 

there is no longer a requirement to provide an a 

priori definition of any elements that might exist in 

the equation that is still to be specified. The 

finished product is a methodology that, despite 

offering a great deal of flexibility in the pursuit of 

differential equations, still creates a well-

structured output (expressed as a graph) that is 

suitable for further inquiry and analysis. Despite 

the fact that it offers a significant deal of flexibility 

in the pursuit of differential equations, the final 

product is a methodology. 

METHODOLOGY 

The following is the official definition of the space 

that is symbolized by the symbol UL and which 

stands for the set of function pairs: Let there be a 

function known as u that is defined on a 

spatiotemporal domain of interest, which will be 

referenced as x R du from here on out. Let us 

assume that there is a function that is described 

using the real numbers. The provided criterion, 

which is represented by the notation L[u] = f (u, f) 

UL, is an example of a particular operator that 

works with the variables u and f. It has been 

determined that the functions that are being looked 

at meet the requirements of this criterion. The 

dimension denoted by the notation dst is present in 

the spatiotemporal domain x R. By utilizing the 

observation operator O: U D, one is able to gather 

discrete samples of functions, some of which may 

have stochastic properties. The samples of the ith 
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function are represented by the data set Di, and the 

value dij indicates the jth sample of the ith 

function (for example, the digital readouts of 

sensors). For the sake of this investigation, we 

have compiled a set of N experiments, which we 

will refer to as "Di" where i equals 1, and each 

experiment consists of potentially distinct pairings 

(u, f). The differential equation L that regulates the 

physical systems that are of interest to us in this 

class is our goal, and our mission is to determine 

it. In addition, we make an effort to modify any 

parameters contained within the framework L that 

are unique to the data that was seen. In the current 

inquiry, we offer an approach, which can be seen 

displayed in Figure 1. This is done so that we can 

address this difficulty. In the next sections, we will 

examine this approach in greater depth and go 

through further specifics. To begin the study, we 

used explicit and differentiable models, which are 

indicated as Mij N,du i,j=1 and Mij M, to fit 

individual scalar output data sets dij. These models 

were used to find a good match for the data. The 

Gaussian processes3 and the fully-connected 

feedforward neural networks (15) models were 

investigated to see which one would be more 

appropriate. It is vital that the importance of 

ensuring that the selected model architectures, 

including the nonlinearities and kernels that are 

used, align with the desired differentiability 

properties that align with our assumptions 

regarding the qualities of unsupervised learning be 

acknowledged. This is because it is imperative that 

the desired differentiability properties align with 

our assumptions. 

Following this, we will proceed to add into our 

dataset dij representations of differentiable 

functions, which will be denoted by the notation 

Mij. After that, differential equations are built by 

utilizing a genetic programming approach as the 

method of construction. In this investigation, we 

will look at a differential equation that stands 

alone and is referred to as an individual. This 

equation can be portrayed as a tree graph with the 

notation G(V, E). The graph that is depicted in this 

visual representation features parent vertices that 

represent n-ary operators that have been picked by 

the user from a library of operators. On the other 

hand, the leaves contained inside the network 

stand in for specific applications of fitted models. 

Our scope of coverage encompasses not only 

algebraic operators like addition and subtraction, 

but also differential operators like parentheses and 

partial derivatives, in addition to algebraic 

operators like addition and subtraction. The graph 

incorporates all of the leaves, or realizations, that 

correspond to a particular "experiment" that is 

designated by the variable i. These realizations are 

contained within the graph. The method of 

computing differential operators is made easier by 

the employment of PyTorch for automatic 

differentiation (19). The operator nodes used in 

this study utilise functions rather than arrays of 

integers as their argument type, which is a 

significant departure from the operator nodes used 
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in previous studies. This extremely important 

distinction makes it possible to formulate G as a 

function that can be evaluated at any particular 

value of x, resulting in a residual that is denoted by 

the symbol r(x). In Figure 2, we illustrate a 

collection of visually represented expressions that 

our system is able to interpret in a relatively short 

amount of time. 

In the end, the parameters that need to be 

calibrated are included in the function G as 

constant entities that are represented by leaf nodes. 

The method of calibrating makes use of black-box 

variational inference while operating inside a 

Bayesian framework. Our limited comprehension 

of the functions connected to the variables i's in G 

is the impetus for our decision to go with a non-

factored multivariate Gaussian variational 

posterior q() and a flat prior for p(). A Gaussian 

distribution is used to mimic the probability 

distribution of a variable, and the estimated 

variance of the distribution is represented by the 

symbol r(x). 

This particular research endeavor utilizes genetic 

programming as a method for investigating the 

hypothesis space that is associated with graphs 

(21). Deap (22) uses the evolutionary technique to 

generate, change, and combine the graphs. This 

process takes place over time. Participants 

compete in the fitness function L by making use of 

the evidence lower bound (ELBO) that is 

calculated at the inputs that are related to the Di's. 

An iterative process is what allows the 

evolutionary algorithm, often known as EA, to 

generate differential equations all by itself and 

then evaluate the results of those equations. As a 

consequence of this, the evolutionary algorithm 

(EA) generates a collection of prospective 

differential equations (G1, G2,...), which are then 

grouped according to the degree to which they are 

suitable and are designated using the notation 

L(G1, D), L(G2, D), and so on. The degree to 

which these equations, when applied in the form of 

fitted models (M), shed light on the gathered 

information is reflected in the rating that has been 

provided. Previous research (23, 24) has shown 

that the advocating of minimalism can be 

accomplished by using multi-objective 

optimization approaches that contain a 

supplementary fitness function that places an 

emphasis on parsimony. In the course of this 

investigation, we did not make use of this method; 

nevertheless, the choice not to do so was made due 

to the fact that it was not necessary to identify the 

precise equations that were operating in the 

background of our particular scenarios. If a person 

is capable of gathering more data, our method can 

be used in conjunction with an active learning loop 

to gradually acquire more samples. The goal is to 

improve the Di's by employing the acquisition 

function a(x) = r 2 (x) within the confines of the 

G1 framework. Because of this, it is necessary to 

conduct a more extensive examination of the areas 

in which the interpretation of the gathered data that 

is the least acceptable is most widespread. When a 
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tolerance is chosen in such a way that a = arg 

maxxx a(x), one can say that the iterative process 

has reached the point where it can be said to have 

achieved convergence, and the resulting equation 

can adequately explain the observed data. 

CONCLUSION 

In this study, we have presented and demonstrated 

the effectiveness of a new approach in identifying 

governing differential equations with diverse 

structures from raw data pertaining to different 

ordinary differential equations. The 

aforementioned methodology was devised with the 

objective of identifying governing differential 

equations possessing arbitrary structure. Due to the 

used methodology, researchers are now afforded 

the opportunity to utilize an artificial intelligence- 

driven "research assistant," thereby enhancing 

their capacity to comprehend and engage with 

advanced concepts in the field of physics. 

Furthermore, the results produced by our 

approach, including of differential equations that 

are easily comprehensible to individuals, are 

compatible with the existing methodologies 

employed by scientists and engineers. These 

techniques encompass numerical simulation, 

theoretical analysis, and the utilization of physics-

informed machine learning approaches.
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